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Modeling Feature Influences
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Describing the Performance Distribution
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Challenges
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Collinearities

encryption

Caesar RSA

Binary & numeric features

encryption = False
compression = True
compression_level = 5

Non-trivial distributions



Syflow - A Subgroup Discovery Method
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Rule format: ٿ𝑓∈𝐹 𝛼𝑓 < 𝑥𝑓 < 𝛽𝑓 on values 𝑥𝑓 of features 𝑓 ∈ 𝐹 

Learns set of rules describing “exceptional” subspaces

Continuous optimization method

Collinearities

encryption

Caesar RSA

Binary & numeric features

encryption = False
compression = True
compression_level = 5

Non-trivial distributions



𝑃𝑌
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Optimization Objective

𝑃𝑌|𝑆=1

Kullback-Leibler Divergence

𝐷𝐾𝐿 𝑃𝑌|𝑇=1 𝑃𝑌)

Size-Corrected Kullback-Leibler Divergence

𝐷𝑊𝐾𝐿 𝑃𝑌|𝑆=1 𝑃𝑌) = 𝑛𝑠
𝛾 ෡𝐷𝐾𝐿 𝑃𝑌|𝑆=1 𝑃𝑌) + 𝜆 ෡𝐷𝐾𝐿 𝑃𝑌|𝑆=1 𝑃𝑌|𝑆𝑗=1)

Size of the subspace

Estimated KL divergence 
to whole population

Estimated KL divergence 
to previous subspaces

𝑃𝑌|𝑇=1



Does Syflow Work on Performance Data?
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Creating a Ground Truth
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Sample rule1. Shuffle target2. Seed subspace3.



F1 Score Between Seeded & Detected Subspaces
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Subspaces consist of 5-20% of all samples; 3 predicates per rule; 3 rules per run; 100 randomized runs per distribution

Sample sets taken from: Mühlbauer et al.: Analyzing the Impact of Workloads on Modeling the Performance of Configurable Software Systems



Scalability
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Subspaces consist of 5-20% of all samples; 3 predicates per rule; 3 rules per run; 100 randomized runs per distribution

Sample sets taken from: Mühlbauer et al.: Analyzing the Impact of Workloads on Modeling the Performance of Configurable Software Systems



Drawback: Limited Number of Rules
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Not found

Already found



Conclusion
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RQ1: Can we extract interesting subspaces of configuration 

spaces from real-world performance distributions?

RQ2: What information about real-world software systems 

can we learn with Syflow?



Appendix
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Kullback-Leibler Divergence

𝐷𝐾𝐿 𝑃𝑌|𝑆=1 ∥ 𝑃𝑌 = න
𝑦∈𝒴

𝑝𝑌|𝑆=1 𝑦 log
𝑝𝑌|𝑆=1(𝑦)

𝑝𝑌(𝑦)
ⅆ𝑦

𝐷𝐾𝐿 𝑃 ∥ 𝑄 = ෍

𝑥∈𝑋

𝑝 𝑥 log
𝑝(𝑥)

𝑞(𝑥)

Discrete Case

Continuous Case
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Soft Predicates

ො𝜋 𝑥𝑖; 𝛼𝑖 , 𝛽𝑖 , 𝑡 =
𝑒

1
𝑡

(2𝑥𝑖−𝛼𝑖)

𝑒
1
𝑡

𝑥𝑖 + 𝑒
1
𝑡

(2𝑥𝑖−𝛼𝑖) + 𝑒
1
𝑡

(3𝑥𝑖−𝛼𝑖−𝛽𝑖)
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Syflow Finds Subspaces for Kanzi
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