

UNIVERSITÄT LEIPZIG

FOSD 2025 - Köthen

Conformal Prediction for Uncertainty Quantification in Performance Modelling

Stefan Jahns

PERFORMANCE MODELLING

Performance modeling is the process of analyzing and predicting how a system performs under different configurations and workloads.^[1]

- Purpose:
 - Helps in performance optimization, capacity planning, debugging, and system design
- Challenges:
 - Systems are highly configurable, leading to huge configuration spaces
 - Performance is influenced by individual configuration options and their interactions
 - **Sampling and learning** the performance behavior efficiently is complex

UNCERTAINTY QUANTIFICATION

Uncertainty quantification is the process of identifying, characterizing, and reducing uncertainty in models and predictions.^[2]

Types of uncertainty:

- Aleatoric Uncertainty:
 - Inherent randomness in the system (e.g., measurement noise)
- Epistemic Uncertainty:
 - Lack of knowledge due to limited data
 - Model limitations

UNIVERSITÄT LEIPZIG

Image source: Practical Guide to Applied Conformal Prediction- Manokhin

UNCERTAINTY QUANTIFICATION

- Purpose:
 - Ensures models are interpretable and trustworthy
 - Helps in making more **reliable predictions** and **informed decisions**
- Challenges in Performance Modelling:
 - Traditional models use **point estimates**, ignoring uncertainty
 - Sources of uncertainty include:
 - Measurement bias (inaccurate data collection)
 - Model choice (different models give different results)
 - Incomplete data (not all configurations can be tested)

UNCERTAINTY QUANTIFICATION

Accurate performance models are essential, but without uncertainty quantification, we risk making overconfident and unreliable decisions.^[3]

Solutions:

- Bayesian Regression
- Conformal Prediction

- Why choose conformal prediction over Bayesian regression?
 - Requires only the assumption of **exchangeable data**
 - Compatible with **any machine learning model** without modification
 - Guarantees of valid uncertainty quantification

A statistical framework that provides valid confidence intervals for predictions.^[4]

- Confidence Interval:

- The real value falls within this interval with probability 1α
- $\alpha := user chosen error level$
- Core principles:
 - Law of Large Numbers
 - Non-Conformity Measure

- Non-Conformity Measure:
 - Represents how surprising a value is (e.g., difference between predicted and actual values) → gives conformity scores

	D _{Train}	D _{Calibration}											
Config	$C_i \dots C_j$	C ₁₇	C ₅₅	C ₂₃	C ₁₁₅	C ₉₂	C ₆	C ₂₂	C ₁₅	C ₁₀₂	C ₃₀	C ₂₃₅	
Real value													
Estimation													
Score													

- Non-Conformity Measure:
 - Represents how surprising a value is (e.g., difference between predicted and actual values) → gives conformity scores

	D _{Train}	D _{Calibration}											
Config	C _i C _j	C ₁₇	C ₅₅	C ₂₃	C ₁₁₅	C ₉₂	C ₆	C ₂₂	C ₁₅	C ₁₀₂	C ₃₀	C ₂₃₅	
Real value		10	9	9	14	13	12	8	7	9	10	?	
Estimation	х	11	7	8	14	16	9	10	6	9	12	9	
Score													

- Non-Conformity Measure:
 - Represents how surprising a value is (e.g., difference between predicted and actual values) → gives conformity scores

	D _{Train}	D _{Calibration}											
Config	C _i C _j	C ₁₇	C ₅₅	C ₂₃	C ₁₁₅	C ₉₂	C ₆	C ₂₂	C ₁₅	C ₁₀₂	C ₃₀	C ₂₃₅	
Real value		10	9	9	14	13	12	8	7	9	10	?	
Estimation	х	11	7	8	14	16	9	10	6	9	12	9	
Score	x											x	

- Non-Conformity Measure:
 - Represents how surprising a value is (e.g., difference between predicted and actual values) → gives conformity scores

	D _{Train}	D _{Calibration}										
Config	C _i C _j	C ₁₇	C ₅₅	C ₂₃	C ₁₁₅	C ₉₂	C ₆	C ₂₂	C ₁₅	C ₁₀₂	C ₃₀	C ₂₃₅
Real value		10	9	9	14	13	12	8	7	9	10	?
Estimation	х	11	7	8	14	16	9	10	6	9	12	9
Score	x	1	2	1	0	3	3	2	1	0	2	х

- α: 0.2 → 0.2 x 10 = 2 → choose 2nd largest score (=3)

- Inverse Non-Conformity Measure: 9 ± 3

Thanks for your attention.

SOURCES

- [1] <u>https://dl.acm.org/doi/10.1145/2786805.2786845</u>
- [2] https://doi.org/10.1137/1.9781611973228
- [3] <u>https://doi.org/10.1007/s10664-022-10250-2</u>
- [4] ISBN-13: 9781805122760