Sk =

Where are my knobs?

Unveiling Hidden Configuration Knobs and
Investigating their Implications on Performance

'''''''

&
Q.A
-
~ ‘\ X

Lukas Abelt Florian Sattler Sven Apel

Saarland Informatics Campus
Saarland University
FOSD Meeting 2025, Kothen

Hidden Configurability?

* Performance depends on

configuration void foo() {
const int boost threshold = 500;

* Can we access all options?

—>Hidden configuration opportunities? if (count > boost_threshold) {
fast_implementation()
} else {
e Whatis “Hidden”? slow_implementation()

}

* [t depends...

Hidden Configurability

Roles
Developers Clients
* Build configurable SW systems * Use configurable SW systems
* Make design decisions: * Make configuration decisions:
* Select configuration options * |dentify relevant options
* Specify ranges for options * Explore configuration range

* Provide documentation e Select suitable values for use-case

Hidden Configurability

Caused by Developers

AwesomeProcessLib.cpp

void process() {
const int boost threshold = 500;

Configuration Opportunities

* Code that may serve as
Configuration knob if (count > boost_threshold) {

fast _implementation()
} else {
slow implementation()

* Configuration may be beneficial
* For some clients

« Cannot be configured by the clients MyProject.cpp

. #include <AwesomeProcessLib>
* Except with developer code changes
void foo() {

— process();

}

Hidden Configurability
Caused by Clients

Unrealized Configurability
* Configuration knob is there

* But not set, due to:
* Visibility
* Unawareness
Lack of domain knowledge
Default values
Missing documentation

e Lead to uninformed decision

AwesomeProcessLibV2.h
enum Mode {

SLow,
FAST

s

\\\Tvoid process(Mode = Mode::SLOW);

MyProject.cpp

#include <AwesomeProcessLibV2>

void foo() {

- process();

}

Hidden Configurability

Goals

1. Finding Hidden Configurability
* Automatic
« Light-weight

2. Impact of Hidden Configurability

* Performance Effects

3. Understanding Hidden Configurability
* Why isitthere?
* How can we prevent it?
 Can we “fix”it?

Hidden Configurability

Pipeline

?

Hidden Configurability
Pipeline — Step 1: Identification

?

Hidden Configurability
Candidate Patterns ™

varDecl (allof(

hasType(hasUnqualifiedDesugaredType(builtinType())),
hasType(isConstQualified()),
hasInitializer(AnyLiteralType)));

/ Open-Source Projects \ D / Hidden Configurability a\

VP@ @MQ Detector Tool ™ o
bzip2 &

K % / K AS'\I?'Maf cher /

Q®©
Huww
- Wuuuv

X

Hidden Configurability
Pipeline — Step 2: Classification

DA

static float tansig _approx(float x) {

const float No ;
Project Locations const float N1 ;
BROTLI 8

bool ParseVpxCodecPrivate(const uint8 t*
DUNE 303 data, Vp9CodecFeatures* features) {
Manual Classification const int kVpxCodecPrivateMinLength = 3;
FASTDOWNWARD 14 — const uint8_t kVp9Profileld = 1;
HYTEG 1097
LIBVPX 321 -
Ideas:

LIBZMQ 50 'Eisl\:gf)y'”format'on // Is 1000 a sensible default?

const int default _hwm = 5

Configuration Opportunity!

const double kLiteralBlockSwitchCost = ; const double kLiteralBlockSwitchCost =

)

const double kCommandBlockSwitchCost = ; const double kCommandBlockSwitchCost =
const double kDistanceBlockSwitchCost = ; const double kDistanceBlockSwitchCost =

Hidden Configurability
Pipeline — Step 3: Variation

-

.

Configuration
Opportunity

// Is 1000 a sensible default?
const int default _hwm = 1000;

J

Select
Alternatives

?

a sensible default?
default_hwm = 100;

a sensible default?
default_hwm = 200;

a sensible default?
default_hwm = 300;

// Is 500 a sensible default?
const int default_hwm = 500;

// Is 2000 a sensible default?
const int default _hwm = 2000;

// Is 3000 a sensible default?
const int default_hwm = 3000;

// Is 4000 a sensible default?

const int default_hwm = 4000;

// Is 5000 a sensible default?
const int default_hwm = 5000;

// Is 10000 a sensible default?
onst int default _hwm = 1@@@@

For each
alternative

&ﬂ&ﬂ\

Pz

Testsuites

Benchmarks

/

Hidden Configurability

Insights

leb6
304 @ default_hwm = 10 o
default_hwm = 50
® default_hwm = 500 o
251 e default_hwm = 1000
@ default_hwm = 2000
5 2.0 :
Up to 25% throughput improvement o
(As compared to default)
S @
e
F 1.0 - :
®
L
0.5 A °
-
004 ® ° [e °
2|9 2|11 2|13 2|15 2'17

el | Q Message size (B)

// Is 1000 a sensible default?
const int default_hwm = 5

Hidden Configurability

Summary
0
1.Select Candidate Patterns?
? 2.Filter Candidates?
3.Select Alternatives?

Closing Remarks
Are we the baddies?

e TL;dr:

* There are already too many
options to understand

e Do we need more features?

Hey, You Have Given Me Too Many Knobs!

Understanding and Dealing with Over-Designed Configuration in System Software

Tianyin Xu*, Long Jin*, Xuepeng Fan*#, Yuanyuan Zhou*,
Shankar Pasupathyt, and Rukma Talwadkert
*University of California San Diego, USA *Huazhong Univ. of Science & Technology, China NetApp, USA
{tixu, longjin, xuf001, yyzhou}@cs.ucsd.edu
{Shankar.Pasupathy, Rukma.Talwadker}@netapp.com

ABSTRACT

Configuration problems are not only prevalent, but also severely
impair the reliability of today’s system software. One fundamental
reason is the ever-increasing complexity of configuration, reflected
by the large number of configuration parameters (“knobs™). With
hundreds of knobs, configuring system software to ensure high re-
liability and performance becomes a daunting, error-prone task.

This paper makes a first step in understanding a fundamental
question of configuration design: “do users really need so many
knobs?” To provide the quantitatively answer, we study the con-
figuration settings of real-world users, including thousands of cus-
tomers of a commercial storage system (Storage-A), and hundreds
of users of two widely-used open-source system software projects.
Our study reveals a series of interesting findings to motivate soft-
ware architects and developers to be more cautious and disciplined
in configuration design. Motivated by these findings, we provide
a few concrete, practical guidelines which can significantly reduce
the configuration space. Take Storage-A as an example, the guide-
lines can remove 51.9% of its parameters and simplify 19.7% of
the remaining ones with little impact on existing users. Also, we
study the existing configuration navigation methods in the context
of “too many knobs™ to understand their effectiveness in dealing
with the over-designed configuration, and to provide practices for
building navigation support in system software.

Categories and Subject Descriptors: D.2.10 [Software Engineer-
ing]: Methodologies

General Terms: Design, Human Factors, Reliability

Keywords: Configuration, Complexity, Simplification, Navigation,
Parameter, Difficulty, Error

1. INTRODUCTION
1.1 Motivation

In recent years, configuration problems have drawn tremendous
attention for their increasing prevalence and severity. For example,
Yin et al. reported that configuration issues accounted for 27% of

2

= 600 Storage-A w
a B 400
Z s00 g
5 400 g 300
=3 =3
5 300 5 200
g
100
2 o z
o 0
712006 712008 742010 712012 772014 111999 172003 172007 172011 122014
Release time Release time
600 00
£ 500 Apache £ 100 Hadoop 0,
z S 100 .
g s 120
g g
£ 300 &
° S 80
5 200 3
El (RREES £ plote pi—,
2 1001 131s E j —e— MapReduce|
o —=—HDFS
171998 172002 122006 172010 172014 1£2006 172008 12010 1/2012 172014
Release time Release time

Figure 1: The increasing number of configuration parameters with
software evolution. Storage-A is a commercial storage system from a
major storage company in the U.S.

all the customer-support cases in a major storage company in the
U.S., and were the most significant contributor (31%) among all
the high-severity cases [75]]. Rabkin and Katz reported that config-
uration issues were the dominant source of support cost in Hadoop
clusters (based on data from Cloudera Inc.), in terms of both the
number of support cases and the amount of supporting time [46].
Moreover, configuration errors, the after-effects of configuration
difficulties, have become one of the major causes of system fail-
ures. Barroso and Holzle reported that configuration errors were the
second major cause of service-level disruptions at one of Google’s
main services [16]. Recently, a number of outages of Internet and
cloud services, including Google, LinkedIn, Microsoft Azure, and
Amazon EC2, were caused by configuration errors [3359]63/68].
One fundamental reason for today’s prevalent configuration is-

et 3 tlm Atrne et G et mmttmol it e mmondS mrremm i o e nTTer

Hidden Confi gura b|l|ty S E iz Hidden Configurability S

Pipeline — Step 1: Identification

Insights -

—— Hidden C

Hidden Configurability SEwn

pee Pipeline — Step 2: Classification
304 @ default hwm =10 .
default_h =50
: le::lt:haz =500 ° OpenSource | project Locations ﬁ _
254 e default_hwm = 1000 VP‘? e BROTLI
f; = DUNE . . ey
_ | o 20 bzipZ P ' Hidden Configurability SE B
5 201 3 y HyTEG Pipeline — Step 3: Variation
Up to 25% throughput improvement . P N
(As compared to default) _— _
s ® R
F 101 3 “ T
o R
L]
1 m o .
K3
i []
0{e o o o o 1 g .
> on BE AN AT i s |

il | | i Message size (B)

Lukas Abelt Saarland Informatics Campus
abeltluk@cs.uni-saarland.de Saarland University

FOSD Meeting 2025, Kothen

Project Total Locations Filtered Locations

BROTLI 8 5,
DUNE 303 [
FASTDOWNWARD 14 5,
HyYTEG 1097 0
LIBVPX 321 9
LIBZMQ 510, 1

15

	Slide 1: Where are my knobs? Unveiling Hidden Configuration Knobs and Investigating their Implications on Performance
	Slide 2: Hidden Configurability?
	Slide 3: Hidden Configurability Roles
	Slide 4: Hidden Configurability Caused by Developers
	Slide 5: Hidden Configurability Caused by Clients
	Slide 6: Hidden Configurability Goals
	Slide 7: Hidden Configurability Pipeline
	Slide 8: Hidden Configurability Pipeline – Step 1: Identification
	Slide 9: Hidden Configurability Pipeline – Step 2: Classification
	Slide 10: Hidden Configurability Pipeline – Step 3: Variation
	Slide 11: Hidden Configurability Insights
	Slide 12: Hidden Configurability Summary
	Slide 13: Closing Remarks Are we the baddies?
	Slide 14
	Slide 15

