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Feature Models

Implementierungstechniken fiir Software-Produktlinien
Ubung 10: Analyse von Produktlinien

1. Feature-Modell-Analyse
Gegeben sei das folgende Feature-Modell FM.
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QuickSort v LinearSearch = Array
Array v Tree = Structures
Conscle = Simulation
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Edits to Feature Models

2. Evolution von Feature-Modellen

(a) Welche semantischen Anderungen an Feature-Modellen kénnen vorgenommen
werden?

(b) Gegeben sei das folgende Feature-Modell FM’. Welche Anderung gegeniiber dem
obigen Modell FM wurden vorgenommen? Was bringen diese Anderungen?

DataStructures
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Feature-Model Edits [Thiim et al. '09]
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Feature-Model Edits [Thiim et al. '09]
No Products Products
Added Added
No Products C Q
Deleted Refactoring | Generalization

Products ® O

Deleted Specialization ~ Arbitrary Edit

e goal: compare versions of a feature model

e use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration = quality assurance
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SAT-Based: Simplified Reasoning [Thiim et al. '09]
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SAT-Based: Simplified Reasoning [Thiim et al. '09]

e idea: ideally, make two calls to a SAT solver
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SAT-Based: Simplified Reasoning [Thiim et al. '09]

e idea: ideally, make two calls to a SAT solver
e 1) generalizes ¢ iff = ¢ — 1 iff =SAT (A1)
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SAT-Based: Simplified Reasoning [Thiim et al. '09]

e idea: ideally, make two calls to a SAT solver

e 1) generalizes ¢ iff = ¢ — 1 iff =SAT (A1)
o 1) specializes ¢ iff = 1 — ¢ iff "SAT(HA-¢)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf

Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thiim et al. '09]

e idea: ideally, make two calls to a SAT solver
e 1) generalizes ¢ iff = ¢ — 1 iff =SAT (A1)
e 1 specializes ¢ iff = ¢ — ¢ iff =SAT (Y A—¢)
e but: SAT requires conjunctive normal form
(CNF), and —) is large and explodes @
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SAT-Based: Simplified Reasonin Thiim et al. 09 3N ©
p e [ : ] \QM Implemented in FeaturelDE s

e idea: ideally, make two calls to a SAT solver
e 1) generalizes ¢ iff = ¢ — 1 iff =SAT (A1)
e 1 specializes ¢ iff = ¢ — ¢ iff =SAT (Y A—¢)
e but: SAT requires conjunctive normal form
(CNF), and —) is large and explodes @

e solution: split into many smaller SAT calls

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://wuw.fosd.de/featureide

IDE
eature
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e idea: ideally, make two calls to a SAT solver
e 1) generalizes ¢ iff = ¢ — 1 iff =SAT (A1)
e 1 specializes ¢ iff = ¢ — ¢ iff =SAT (Y A—¢)
e but: SAT requires conjunctive normal form
(CNF), and — is large and explodes @

e solution: split into many smaller SAT calls

Weaknesses

let’s see . ..

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://wuw.fosd.de/featureide
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eature
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Remarks on Significance (Only 1 Day Old)

Tobias HeB in Home Office
“Hey Thomas,

I
| have good news! The New Algorithm

| checked every commit in the history of String classify(FM f, FM g) {
Busybox, Fiasco, Soletta, uclibc, Toybox, return " Arbitrary Edit”;
and FinancialServices. }

We can simplify your classifi-
cation algorithm, as 100 % of the changes

are arbitrary edits:”

Thomas Thiim Reasoning About Edits to Feature Models (ICSE'09) ~ SPLC'23 MIP Award Talk - 4. Impact

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 6
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SAT-Based: Simplified Reasoning [Thiim et al. '09]

e idea: ideally, make two calls to a SAT solver
e 1 generalizes ¢ iff |= ¢ — 1 iff “SAT(pA—1))
e 1) specializes ¢ iff =1 — ¢ iff =SAT(pA—¢)

e but: SAT requires conjunctive normal form
(CNF), and —) is large and explodes @&

e solution: split into many smaller SAT calls

Weaknesses
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SAT-Based: Simplified Reasoning [Thiim et al. '09] BDD-Based: Semantic Differencing  [acher et al. '12]

e idea: ideally, make two calls to a SAT solver
e 1 generalizes ¢ iff |= ¢ — 1 iff “SAT(pA—1))
e 1) specializes ¢ iff =1 — ¢ iff =SAT(pA—¢)

e but: SAT requires conjunctive normal form
(CNF), and —) is large and explodes @&

e solution: split into many smaller SAT calls Weaknesses

Weaknesses

e all nontrivial edits are arbitrary @
e requires O(n) SAT calls given length n of ¢ A1)

e assumes added and removed features to be dead

implemented in implemented in FAM ﬁIiAR
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[Thiim et al. '09]
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BDD-Based: Semantic Differencing

[Acher et al. '12]

e idea: reify differences as another feature model

Weaknesses

implemented in FAM ﬁIiAR
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BDD-Based: Semantic Differencing  [Acher et al. '12]

e idea: reify differences as another feature model

e compile ¢ A =) into a binary decision diagram
(BDD)

e perfectly captures differences between versions
Weaknesses

e same coarse-grained classification as Thim et al.

e requires a BDD, which currently does not scale
to very large feature models

implemented in FAM iIiAR
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SAT-Based (efficient, but coarse-grained)

BDD-Based: Semantic Differencing  [Acher et al. '12]

e idea: reify differences as another feature model

e compile ¢ A =) into a binary decision diagram
(BDD)

e perfectly captures differences between versions

Weaknesses

e same coarse-grained classification as Thim et al.

e requires a BDD, which currently does not scale
to very large feature models

e no empirical evaluation

e assumes added and removed features to be dead

implemented in FAM iIiAR

BDD-Based (fine-grained, but inefficient)
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SAT-Based: Simplified Reasoning

[Thiim et al. '09]

e idea: ideally, make two calls to a SAT solver
e 1) generalizes ¢ iff |= ¢ — 1 iff “SAT (A1)
e 1) specializes ¢ iff =1 — ¢ iff =SAT(pA—¢)

e but: SAT requires conjunctive normal form
(CNF), and —) is large and explodes @&

e solution: split into many smaller SAT calls
Weaknesses

e all nontrivial edits are arbitrary @
e requires O(n) SAT calls given length n of ¢ A4

e assumes added and removed features to be dead

. . IDE
implemented in E G

BDD-Based: Semantic Differencing  [Acher et al. '12]

e idea: reify differences as another feature model

e compile ¢ A =) into a binary decision diagram
(BDD)

e perfectly captures differences between versions

Weaknesses

e same coarse-grained classification as Thim et al.

e requires a BDD, which currently does not scale
to very large feature models

e no empirical evaluation

e assumes added and removed features to be dead

implemented in FAM iIiAR

SAT-Based (efficient, but coarse-grained) < ¥SAT-Based (?) < BDD-Based (fine-grained, but inefficient)
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< —SAT( ) exponential @
& =SAT(07(d A —b))  linear + quasi-equiv. @

O(n) *SAT = O(n) transformation + O(1) = SAT

CNF Transformation ¢/,: Distributive
apply laws of logic: De Morgan + distributivity
CNF Transformation 0: Tseitin ['83]

abbreviate every subformula x with an auxiliary
variable defined as aux, <+ x

Introducing #SAT-Based Reasoning

the degree of removed configurations is
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#SAT = DPLL-style exhaustive search or d-DNNF
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O(n) *SAT = O(n) transformation + O(1) = SAT

CNF Transformation ¢/,: Distributive
apply laws of logic: De Morgan + distributivity
CNF Transformation 0: Tseitin ['83]
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the degree of removed configurations is
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O(n) *SAT = O(n) transformation + O(1) = SAT

CNF Transformation ¢/,: Distributive
apply laws of logic: De Morgan + distributivity
CNF Transformation 0: Tseitin ['83]

abbreviate every subformula x with an auxiliary
variable defined as aux, <+ x

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 < FATOT(@ A )

S asatorey e

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!
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& —SAT( ) exponential @
& =SAT(07(d A —b))  linear + quasi-equiv. @

O(n) *SAT = O(n) transformation + O(1) = SAT

CNF Transformation ¢/,: Distributive
apply laws of logic: De Morgan + distributivity
CNF Transformation 0: Tseitin ['83]

abbreviate every subformula x with an auxiliary
variable defined as aux, <+ x

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 < FATOT(@ A )

S asatorey e

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

#SAT(O7(m1 ¢ A2 )
#SAT(07(m1 ¢))

depends on the use case:

removed f's

e.g., m = 3(V¢ \ VTZJ) GD
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<

Generalization

1) generalizes ¢
e Fooy
< —SAT(
& =SAT(07(d A —b))  linear + quasi-equiv. @

) exponential @

O(n) *SAT = O(n) transformation + O(1) = SAT

CNF Transformation ¢/,: Distributive

apply laws of logic: De Morgan + distributivity
CNF Transformation 0: Tseitin ['83]

abbreviate every subformula x with an auxiliary
variable defined as aux, <+ x

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 < FATOT(@ A )

S asatorey e

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

#SAT(O7(m1 ¢ A2 )
#SAT(07(m1 ¢))

depends on the use case:

removed f's

e.g., m = 3(V¢ \ VTZJ) GD
eg., m = Avevw\v¢(v > def(v)) A — added f's

Quantified Reasoning About Edits to Feature Models


https://link.springer.com/chapter/10.1007/978-3-642--1_28

Future Work — Where Do We Go From Here?

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?

Applications

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
Applications

e measure inadvertent variability reduction

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
Applications

e measure inadvertent variability reduction

e measure inadvertent variability growth

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
Applications

e measure inadvertent variability reduction
e measure inadvertent variability growth

o reify differences to explore them and lift analyses

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
Applications, Evaluations

e measure inadvertent variability reduction
e measure inadvertent variability growth

o reify differences to explore them and lift analyses

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
Applications, Evaluations

e measure inadvertent variability reduction
e measure inadvertent variability growth

o reify differences to explore them and lift analyses

e compare to SAT-based reasoning  [Thiim et al. '09]

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
Applications, Evaluations

e measure inadvertent variability reduction
e measure inadvertent variability growth

o reify differences to explore them and lift analyses

e compare to SAT-based reasoning  [Thiim et al. '09]

e and to BDD-based differencing [Acher et al. '12]

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
Applications, Evaluations

e measure inadvertent variability reduction
e measure inadvertent variability growth

o reify differences to explore them and lift analyses

e compare to SAT-based reasoning  [Thiim et al. '09]
e and to BDD-based differencing [Acher et al. '12]

e and to syntactic differencing [Dintzner et al. '18]

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
Applications, Evaluations

e measure inadvertent variability reduction
e measure inadvertent variability growth

o reify differences to explore them and lift analyses

e compare to SAT-based reasoning  [Thiim et al. '09]
e and to BDD-based differencing [Acher et al. '12]
e and to syntactic differencing [Dintzner et al. '18]

e evaluate on models + investigate their evolution

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?
, Evaluations, and Algorithmic Improvements

e measure inadvertent variability reduction
e measure inadvertent variability growth

o reify differences to explore them and lift analyses

e compare to SAT-based reasoning  [Thiim et al. '09]
e and to BDD-based differencing [Acher et al. '12]
e and to syntactic differencing [Dintzner et al. '18]

e evaluate on models + investigate their evolution

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Future Work — Where Do We Go From Here?

, Evaluations, and Algorithmic Improvements

measure inadvertent variability reduction
measure inadvertent variability growth

reify differences to explore them and lift analyses

compare to SAT-based reasoning  [Thim et al. '09]
and to BDD-based differencing [Acher et al. '12]
and to syntactic differencing [Dintzner et al. '18]

evaluate on models + investigate their evolution

Total Vs. Partial Tseitin Transformation
e total: abbreviate every subformula
= negation in O(1), greenuces transform effort

e partial: abbreviate only selected subformulas
= introduces fewer auxiliary variables

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models


https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594

Elias Kuiter et al.

Future Work — Where Do We Go From Here?

, Evaluations, and Algorithmic Improvements

measure inadvertent variability reduction
measure inadvertent variability growth

reify differences to explore them and lift analyses

compare to SAT-based reasoning  [Thim et al. '09]
and to BDD-based differencing [Acher et al. '12]
and to syntactic differencing [Dintzner et al. '18]

evaluate on models + investigate their evolution

Total Vs. Partial Tseitin Transformation

e total: abbreviate every subformula
= negation in O(1), greenuces transform effort

e partial: abbreviate only selected subformulas
= introduces fewer auxiliary variables

Projected Model Counting (#3SAT)

#3SAT(OT(P AN, c Vw\v¢(v<—>def(v))/\—np), Vi)
FISAT(O7(#), Vi)
where Vi = (V4 \ Vi) Uaux

[Sundermann et al. '24]
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Future Work — Where Do We Go From Here?

, Evaluations, and Algorithmic Improvements

measure inadvertent variability reduction
measure inadvertent variability growth

reify differences to explore them and lift analyses

compare to SAT-based reasoning  [Thim et al. '09]
and to BDD-based differencing [Acher et al. '12]
and to syntactic differencing [Dintzner et al. '18]

evaluate on models + investigate their evolution

Total Vs. Partial Tseitin Transformation

e total: abbreviate every subformula
= negation in O(1), greenuces transform effort

e partial: abbreviate only selected subformulas
= introduces fewer auxiliary variables

Projected Model Counting (#3SAT)
#ISAT(OT(d A A, e Vw\v¢(v<—>def(v))/\—np), Vi)

#ISAT(07(9), Vr)
where Vi = (V4 \ Vi) Uaux

[Sundermann et al. '24]
Non-Clausal Slicing

m=3(Ve\Vy) 0o —  m=3(Ve\ Vy)
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Future Work — Where Do We Go From Here?

, Evaluations, and Algorithmic Improvements

e measure inadvertent variability reduction
e measure inadvertent variability growth

o reify differences to explore them and lift analyses

e compare to SAT-based reasoning  [Thiim et al. '09]
e and to BDD-based differencing [Acher et al. '12]
e and to syntactic differencing [Dintzner et al. '18]

e evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(0p (¢ A )
#SAT(0p(9))

HSAT(0r (oA ) _ |
#SAT(07(4))

Total Vs. Partial Tseitin Transformation

e total: abbreviate every subformula
= negation in O(1), greenuces transform effort

e partial: abbreviate only selected subformulas
= introduces fewer auxiliary variables

Projected Model Counting (#3SAT)
#ISAT(OT(d A A, e v¢\v¢(v‘_>def("))/\_‘w)f Vi)

#ISAT(07(9), Vr)
where Vi = (V4 \ Vi) Uaux

[Sundermann et al. '24]
Non-Clausal Slicing

m=3(Ve\Vy) 0o —  m=3(Ve\ Vy)
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e extracts feature-model histories
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renowned feature-model historian practiced feature-model surgeon
studies evolution for a living always eager to slice and diff

torte [€)/ekuiter/torte]

e extracts feature-model histories
o extends KConfigReader, KClause (+ ConfigFix)

e reproducible + fully automated
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Implementation — Meet Two Enthusiastic Researchers (and Their Tools)

dé\'\c'\eux‘-

MME TORTUE SIr KLAUS
renowned feature-model historian practiced feature-model surgeon
studies evolution for a living always eager to slice and diff
torte * [O/ekuiter/torte] clausy ™ [/ ekuiter/clausy]
e extracts feature-model histories e transforms feature models into CNF
o extends KConfigReader, KClause (4 ConfigFix) e competes with Z3 in performance
e reproducible + fully automated e supports diffing (slicing planned)
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Conclusion

No Products Products
Added Added
No Products O Q
Deleted Refactoring Generalization

@
Products ® Ow

Deleted Specialization  Arbitrary Edit
Improving SAT-Based Reasoning

1 generalizes ¢ iff =SAT(0p (¢ A 1))

1 generalizes ¢ iff =SAT(07(¢ A —1)))

Introducing #SAT-Based Reasoning

the degree of removed configurations is

#SAT(@T(Trl ¢ N 2 ’l,Z)))
sSAT(Or(m @) L O

eg., m = E|(V¢\ Vw) 9D

eg., m = AV€V¢\V¢(V > def(v)) A—  added f's

3

©)/ekuiter/torte * €)/ekuiter/clausy ™

(none) 0 <

removed f's

O Disclaimer: No penguins were Al-generated in the making of this presentation. All were returned to TIKZPINGUS, their natural habitat.
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t

removed C

& push
j,—v—(———> addld E

bol AR,CD

Dd«w\sm BiC ijm ™)

o”\) —ab, yes -
work,

Adeted .

ok pellat A=
v ' :#F B is net set | Aeke cldeoabis :#F B is act set

_—
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