
[Elbe, Magdeburg]

Quantified Reasoning About Edits to Feature Models

FOSD 2025 — March 25–28 — Köthen

Elias Kuiter1, Thomas Thüm2, Gunter Saake1

University of Magdeburg1, TU Braunschweig2



Quantified Reasoning About Edits to Feature Models

Elias Kuiter, Gunter Saake 2. Januar 2025

Implementierungstechniken für Software-Produktlinien

Übung 10: Analyse von Produktlinien

1. Feature-Modell-Analyse

Gegeben sei das folgende Feature-Modell FM .

(a) Wie kann man ermitteln, ob eine gegebene Konfiguration in Bezug auf das
Feature-Modell gültig ist? Sind die folgenden zwei Konfigurationen gültig?

C1 = {DataStructures,Algorithms,Structures,Array ,Tree,Visualisation,

Simulation}
C2 = {DataStructures,Algorithms,QuickSort ,LinearSearch,Structures,Array ,

Visualisation,Simulation}

(b) Ist das Feature-Modell konsistent (und warum)? Wie kann man einen SAT-Solver
einsetzen, um diese Anfrage zu beantworten?

(c) Enthält das Feature-Modell tote Features? Welche Features müssen immer gewählt
werden? Wie kann man beides mit Hilfe eines SAT-Solvers ermitteln?

2. Evolution von Feature-Modellen

(a) Welche semantischen Änderungen an Feature-Modellen können vorgenommen
werden?

(b) Gegeben sei das folgende Feature-Modell FM ′. Welche Änderung gegenüber dem
obigen Modell FM wurden vorgenommen? Was bringen diese Änderungen?

1

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 2



Quantified Reasoning About Edits to Feature Models
Elias Kuiter, Gunter Saake 2. Januar 2025

Implementierungstechniken für Software-Produktlinien

Übung 10: Analyse von Produktlinien

1. Feature-Modell-Analyse

Gegeben sei das folgende Feature-Modell FM .

(a) Wie kann man ermitteln, ob eine gegebene Konfiguration in Bezug auf das
Feature-Modell gültig ist? Sind die folgenden zwei Konfigurationen gültig?

C1 = {DataStructures,Algorithms,Structures,Array ,Tree,Visualisation,

Simulation}
C2 = {DataStructures,Algorithms,QuickSort ,LinearSearch,Structures,Array ,

Visualisation,Simulation}

(b) Ist das Feature-Modell konsistent (und warum)? Wie kann man einen SAT-Solver
einsetzen, um diese Anfrage zu beantworten?

(c) Enthält das Feature-Modell tote Features? Welche Features müssen immer gewählt
werden? Wie kann man beides mit Hilfe eines SAT-Solvers ermitteln?

2. Evolution von Feature-Modellen

(a) Welche semantischen Änderungen an Feature-Modellen können vorgenommen
werden?

(b) Gegeben sei das folgende Feature-Modell FM ′. Welche Änderung gegenüber dem
obigen Modell FM wurden vorgenommen? Was bringen diese Änderungen?

1

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 2



Quantified Reasoning About Edits to Feature Models

Elias Kuiter, Gunter Saake 2. Januar 2025

Implementierungstechniken für Software-Produktlinien

Übung 10: Analyse von Produktlinien

1. Feature-Modell-Analyse

Gegeben sei das folgende Feature-Modell FM .

(a) Wie kann man ermitteln, ob eine gegebene Konfiguration in Bezug auf das
Feature-Modell gültig ist? Sind die folgenden zwei Konfigurationen gültig?

C1 = {DataStructures,Algorithms,Structures,Array ,Tree,Visualisation,

Simulation}
C2 = {DataStructures,Algorithms,QuickSort ,LinearSearch,Structures,Array ,

Visualisation,Simulation}

(b) Ist das Feature-Modell konsistent (und warum)? Wie kann man einen SAT-Solver
einsetzen, um diese Anfrage zu beantworten?

(c) Enthält das Feature-Modell tote Features? Welche Features müssen immer gewählt
werden? Wie kann man beides mit Hilfe eines SAT-Solvers ermitteln?

2. Evolution von Feature-Modellen

(a) Welche semantischen Änderungen an Feature-Modellen können vorgenommen
werden?

(b) Gegeben sei das folgende Feature-Modell FM ′. Welche Änderung gegenüber dem
obigen Modell FM wurden vorgenommen? Was bringen diese Änderungen?

1

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 3



Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

What Happens to the Configuration Space?

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

What Happens to the Configuration Space?

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

What Happens to the Configuration Space?

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

What Happens to the Configuration Space?

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

What Happens to the Configuration Space?

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇

∩ ?
= ∅

What Happens to the Configuration Space?

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

What Happens to the Configuration Space?

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

What Happens to the Configuration Space?

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

Feature-Model Edits [Thüm et al. ’09]

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

?
=

?
⊆

?
⊇ ∩ ?

= ∅

Feature-Model Edits [Thüm et al. ’09]

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

• goal: compare versions of a feature model

• use cases: e.g., to avoid unintentional changes,
understand patterns in evolution, or support con-
tinuous integration ⇒ quality assurance

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 4

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

let’s see . . .

Implemented in FeatureIDE

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://www.fosd.de/featureide

Reasoning about Edits to Feature Models 22 Thomas Thüm, Don Batory, Christian Kästner

sorry for increasing
YOUR environmental

footprint

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 2. Contribution 33

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 5

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

let’s see . . .

Implemented in FeatureIDE

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://www.fosd.de/featureide

Reasoning about Edits to Feature Models 22 Thomas Thüm, Don Batory, Christian Kästner

sorry for increasing
YOUR environmental

footprint

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 2. Contribution 33

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 5

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)

• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)
• but: SAT requires conjunctive normal form

(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

let’s see . . .

Implemented in FeatureIDE

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://www.fosd.de/featureide

Reasoning about Edits to Feature Models 22 Thomas Thüm, Don Batory, Christian Kästner

sorry for increasing
YOUR environmental

footprint

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 2. Contribution 33

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 5

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

let’s see . . .

Implemented in FeatureIDE

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://www.fosd.de/featureide

Reasoning about Edits to Feature Models 22 Thomas Thüm, Don Batory, Christian Kästner

sorry for increasing
YOUR environmental

footprint

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 2. Contribution 33

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 5

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

let’s see . . .

Implemented in FeatureIDE

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://www.fosd.de/featureide

Reasoning about Edits to Feature Models 22 Thomas Thüm, Don Batory, Christian Kästner

sorry for increasing
YOUR environmental

footprint

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 2. Contribution 33

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 5

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

let’s see . . .

Implemented in FeatureIDE

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://www.fosd.de/featureide

Reasoning about Edits to Feature Models 22 Thomas Thüm, Don Batory, Christian Kästner

sorry for increasing
YOUR environmental

footprint

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 2. Contribution 33

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 5

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

let’s see . . .

Implemented in FeatureIDE

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://www.fosd.de/featureide

Reasoning about Edits to Feature Models 22 Thomas Thüm, Don Batory, Christian Kästner

sorry for increasing
YOUR environmental

footprint

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 2. Contribution 33

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 5

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

let’s see . . .

Implemented in FeatureIDE

Formal tool demonstration tomorrow at 4:30pm
Available open source at http://www.fosd.de/featureide

Reasoning about Edits to Feature Models 22 Thomas Thüm, Don Batory, Christian Kästner

sorry for increasing
YOUR environmental

footprint

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 2. Contribution 33

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 5

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf


Quantified Reasoning About Edits to Feature Models

Remarks on Significance (Only 1 Day Old)

Tobias Heß in Home Office

“Hey Thomas,

I have good news!

I checked every commit in the history of
Busybox, Fiasco, Soletta, uclibc, Toybox,
and FinancialServices.

We can significantly simplify your classifi-
cation algorithm, as 100% of the changes
are arbitrary edits:”

The New Algorithm

String classify(FM f, FM g) {
return ”Arbitrary Edit”;

}

Thomas Thüm Reasoning About Edits to Feature Models (ICSE’09) – SPLC’23 MIP Award Talk – 4. Impact 41

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 6



Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ

• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained)

< ^SAT-Based (?) <

BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models

SAT-Based: Simplified Reasoning [Thüm et al. ’09]

• idea: ideally, make two calls to a SAT solver

• ψ generalizes ϕ iff |= ϕ→ ψ iff ¬SAT(ϕ∧¬ψ)
• ψ specializes ϕ iff |= ψ → ϕ iff ¬SAT(ψ∧¬ϕ)

• but: SAT requires conjunctive normal form
(CNF), and ¬ψ is large and explodes X

• solution: split into many smaller SAT calls

Weaknesses

• all nontrivial edits are arbitrary f

• requires O(n) SAT calls given length n of ϕ∧ψ
• assumes added and removed features to be dead

implemented in

BDD-Based: Semantic Differencing [Acher et al. ’12]

• idea: reify differences as another feature model

• compile ϕ ∧ ¬ψ into a binary decision diagram
(BDD)

• perfectly captures differences between versions

Weaknesses

• same coarse-grained classification as Thüm et al.

• requires a BDD, which currently does not scale
to very large feature models

• no empirical evaluation

• assumes added and removed features to be dead

implemented in

SAT-Based (efficient, but coarse-grained) < ^SAT-Based (?) < BDD-Based (fine-grained, but inefficient)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 7

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://link.springer.com/chapter/10.1007/978-3-642-31095-9_41


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Quantified Reasoning About Edits to Feature Models – Contribution

Improving SAT-Based Reasoning

ψ generalizes ϕ

⇔ |= ϕ→ ψ

⇔ ¬SAT(θD(ϕ ∧ ¬ψ)) exponential X

⇔ ¬SAT(θT (ϕ ∧ ¬ψ)) linear + quasi-equiv. �

O(n)∗SAT ⇒ O(n) transformation + O(1)∗SAT

CNF Transformation θD : Distributive

apply laws of logic: De Morgan + distributivity

CNF Transformation θT : Tseitin [’83]

abbreviate every subformula χ with an auxiliary
variable defined as auxχ ↔ χ

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

≤ 1 (all)

#SAT = DPLL-style exhaustive search or d-DNNF

we can now quantify the degree of generalization!

How to Handle Added and Removed Features?

depends on the use case:
#SAT(θT (π1 ϕ ∧ π2 ψ))

#SAT(θT (π1 ϕ))

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 8

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://link.springer.com/chapter/10.1007/978-3-642--1_28


Future Work – Where Do We Go From Here?

Applications, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications

, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications

, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications

, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications

, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations

, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations

, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations

, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations

, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations

, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Future Work – Where Do We Go From Here?

Applications, Evaluations, and Algorithmic Improvements

• measure inadvertent variability reduction

• measure inadvertent variability growth

• reify differences to explore them and lift analyses

• compare to SAT-based reasoning [Thüm et al. ’09]

• and to BDD-based differencing [Acher et al. ’12]

• and to syntactic differencing [Dintzner et al. ’18]

• evaluate on models + investigate their evolution

Eliminate Tseitin and Negation

#SAT(θT (ϕ ∧ ¬ψ))
#SAT(θT (ϕ))

= 1− #SAT(θD(ϕ ∧ ψ))
#SAT(θD(ϕ))

Total Vs. Partial Tseitin Transformation

• total: abbreviate every subformula
⇒ negation in O(1), greenuces transform effort

• partial: abbreviate only selected subformulas
⇒ introduces fewer auxiliary variables

Projected Model Counting (#∃SAT)

#∃SAT(θT (ϕ ∧∧
v∈Vψ\Vϕ (v↔def(v))∧¬ψ),Vπ)

#∃SAT(θT (ϕ),Vπ)
where Vπ = (Vϕ \ Vψ) ∪ aux [Sundermann et al. ’24]

Non-Clausal Slicing

π1 = ∃(Vϕ \ Vψ) θD −→ π1 = ∃(Vϕ \ Vψ)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 9

https://link.springer.com/article/10.1007/s10664-017-9557-6
https://dl.acm.org/doi/10.1145/3691620.3695594


Implementation – Meet Two Enthusiastic Researchers (and Their Tools)

Mme Tortue

renowned feature-model historian
studies evolution for a living

Sir Klaus

practiced feature-model surgeon
always eager to slice and diff

torte [§/ekuiter/torte]

• extracts feature-model histories

• extends KConfigReader, KClause (+ ConfigFix)

• reproducible + fully automated

clausy [§/ekuiter/clausy]

• transforms feature models into CNF

• competes with Z3 in performance

• supports diffing (slicing planned)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 10

https://github.com/ekuiter/torte
https://github.com/ekuiter/clausy


Implementation – Meet Two Enthusiastic Researchers (and Their Tools)

Mme Tortue

renowned feature-model historian
studies evolution for a living

Sir Klaus

practiced feature-model surgeon
always eager to slice and diff

torte [§/ekuiter/torte]

• extracts feature-model histories

• extends KConfigReader, KClause (+ ConfigFix)

• reproducible + fully automated

clausy [§/ekuiter/clausy]

• transforms feature models into CNF

• competes with Z3 in performance

• supports diffing (slicing planned)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 10

https://github.com/ekuiter/torte
https://github.com/ekuiter/clausy


Implementation – Meet Two Enthusiastic Researchers (and Their Tools)

délicieu
x!

Mme Tortue

renowned feature-model historian
studies evolution for a living

Sir Klaus

practiced feature-model surgeon
always eager to slice and diff

torte [§/ekuiter/torte]

• extracts feature-model histories

• extends KConfigReader, KClause (+ ConfigFix)

• reproducible + fully automated

clausy [§/ekuiter/clausy]

• transforms feature models into CNF

• competes with Z3 in performance

• supports diffing (slicing planned)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 10

https://github.com/ekuiter/torte
https://github.com/ekuiter/clausy


Implementation – Meet Two Enthusiastic Researchers (and Their Tools)

délicieu
x!

Mme Tortue

renowned feature-model historian
studies evolution for a living

Sir Klaus

practiced feature-model surgeon
always eager to slice and diff

torte [§/ekuiter/torte]

• extracts feature-model histories

• extends KConfigReader, KClause (+ ConfigFix)

• reproducible + fully automated

clausy [§/ekuiter/clausy]

• transforms feature models into CNF

• competes with Z3 in performance

• supports diffing (slicing planned)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 10

https://github.com/ekuiter/torte
https://github.com/ekuiter/clausy


Implementation – Meet Two Enthusiastic Researchers (and Their Tools)

délicieu
x!

diffindo!

Mme Tortue

renowned feature-model historian
studies evolution for a living

Sir Klaus

practiced feature-model surgeon
always eager to slice and diff

torte [§/ekuiter/torte]

• extracts feature-model histories

• extends KConfigReader, KClause (+ ConfigFix)

• reproducible + fully automated

clausy [§/ekuiter/clausy]

• transforms feature models into CNF

• competes with Z3 in performance

• supports diffing (slicing planned)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 10

https://github.com/ekuiter/torte
https://github.com/ekuiter/clausy


Conclusion

group in the feature model, (b) conjoining all cross-tree con-
straints and (c) selecting the root feature. For example, the
feature model f in Figure 1 has the formula P (f):

DB ∧
//tree constraints:

(DB⇒ OS ∧ BufferMgr ∧ Storage) ∧
(OS ∨ BufferMgr ∨ DebugLogging ∨ Storage⇒ DB) ∧
(OS⇔ NutOS ∨Win) ∧ atmost1(NutOS,Win) ∧ . . . ∧
//cross-tree constraints:

(Storage⇒ BTree ∨ Unindexed) ∧ ¬(BTree ∧ Unindexed)

Using a propositional formula representation of a fea-
ture model, it possible to automatically determine whether
a given configuration is valid. For every feature that is se-
lected, its variable is assigned true, otherwise false. The
configuration is valid if and only if the formula evaluates to
true [3].

3 Reasoning

Editing a feature model produces a new feature model.
We want to know how the product line of the original fea-
ture model changes. An edit is a refactoring, i.e., no new
products are added and no existing products are removed,
a specialization meaning that some existing products are
removed and no new products are added, a generalization
when new products are added and no existing products re-
moved, or an arbitrary edit otherwise. This classification is
summarized in Table 2, where shaded regions are after-sets
and unshaded regions are before-sets.

No Products Products
Added Added

No Products
Deleted Refactoring Generalization

Products
Deleted Specialization Arbitrary Edit

Table 2. Classification of Feature Model Edits

A refactoring is useful in restructuring a feature model
without changing its set of products; specializations are use-
ful during derivation processes when products are eliminated;
and generalizations arise when an SPL is extended. Design-
ers should avoid arbitrary edits and restructure them in terms
of a sequence of specializations, generalizations, and refac-
torings, to understand the evolution of a feature model.

Reasoning about feature model edits is far from trivial.
For humans, even small edits can be difficult to classify,
especially if cross-tree constraints are present. For example,
consider Figure 1 once more. The cross-tree constraints in
this model assert that BTree and Unindexed are mutually
exclusive. This same relationship could be expressed by
making BTree and Unindexed alternative features without
cross-tree constraints. This change is a refactoring, as no
products are added or removed. Although this is a simple
example, it does take some time to verify manually that the
change is indeed a refactoring. As modifications become
more complicated, and as feature models grow in size, it can
be extraordinarily difficult to understand the effect of feature
model edits manually.

In this section, we show how satisfiability (SAT) solvers
can be used to classify feature model edits. Our algorithm is
described in four steps. First, we present an intuitive algo-
rithm known in the literature which does not scale. Second,
we present a technique that we call simplified reasoning to
decrease computational complexity to a level that makes it
practical to reason about edits to large feature models where
both models have the same set of concrete features. Third,
we provide a solution for cases when both feature models are
not defined over the same set of concrete features. Finally,
we give a procedure to handle abstract features.

3.1 Reasoning with Formulas

Our classification of edits is based on set relations. Let
f and g be feature models and L(f) and L(g) denote their
respective set of products. If edits transform f into g, these
edits are (a) a generalization if L(f) ⊂ L(g), (b) a special-
ization if L(g) ⊂ L(f), (c) a refactoring if L(f) = L(g),
and otherwise (d) arbitrary. Let P (f) denote the proposi-
tional formula for feature model f . The connection of subset
relations to propositional formulas is defined by [20]:

(L(f) ⊆ L(g)) ≡ (P (f)⇒ P (g)) (1)

That is, all solutions to P (f) must be solutions to P (g).
The intuition is that L(f) ⊆ L(g) when P (f) ⇒ P (g) for
all possible configurations. Hence we are only interested in
whether P (f)⇒ P (g) is a tautology. SAT solvers can verify
this. A propositional formula X is a tautology if its negation
¬X is not satisfiable. The following equation computes ¬X
with X = (P (f)⇒ P (g)).

¬(P (f)⇒ P (g)) ≡ ¬(¬P (f) ∨ P (g))

≡ P (f) ∧ ¬P (g)
(2)

For computation, SAT solvers require a formula to be
in conjunctive normal form (CNF). It is easy to convert a
propositional formula of a feature model into CNF. In fact,
it is straightforward to show that if there are n features in

256

Improving SAT-Based Reasoning

ψ generalizes ϕ iff ¬SAT(θD(ϕ ∧ ¬ψ))

ψ generalizes ϕ iff ¬SAT(θT (ϕ ∧ ¬ψ))

Introducing #SAT-Based Reasoning

the degree of removed configurations is

(none) 0 ≤ #SAT(θT (π1 ϕ ∧ π2 ψ))
#SAT(θT (π1 ϕ))

≤ 1 (all)

e.g., π1 = ∃(Vϕ \ Vψ) θD removed f’s

e.g., π2 =
∧

v∈Vψ\Vϕ (v ↔ def(v)) ∧ ¬ added f’s

§/ekuiter/torte §/ekuiter/clausy

ò Disclaimer: No penguins were AI-generated in the making of this presentation. All were returned to tikzpingus, their natural habitat.

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 11

What is #SAT?

(A ∨ B) ∧ C

Formula is satisfiable.

FM is valid.

translate

input

Formula has 3 solutions.

FM has 42 valid configurations.

input

2Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/SoftVarE-Group/Papers/blob/main/2009/2009-ICSE-Thuem.pdf
https://github.com/ekuiter/torte
https://github.com/ekuiter/clausy
https://github.com/EagleoutIce/tikzpingus




Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Use Case

Assuming . . .

• users are
uniform over
configurations

• updates are
non-interactive

• users expect
choices to be
preserved

. . . how many of
our users are
negatively impacted
by an update?

⇒ decision-making

⇒ understanding
configuration
spaces

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 12



Inadvertent Variability Reduction – The Math

a clever combination of dis-
tributive and Tseitin trans-
formation, #SAT, and slicing

instead of #SAT and slicing
(e.g., FeatureIDE), we can
also use #∃SAT (e.g., pd4)

negation can also be avoided
when using 1− #SAT(x)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 13



Inadvertent Variability Reduction – The Math

a clever combination of dis-
tributive and Tseitin trans-
formation, #SAT, and slicing

instead of #SAT and slicing
(e.g., FeatureIDE), we can
also use #∃SAT (e.g., pd4)

negation can also be avoided
when using 1− #SAT(x)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 13



Inadvertent Variability Reduction – The Math

a clever combination of dis-
tributive and Tseitin trans-
formation, #SAT, and slicing

instead of #SAT and slicing
(e.g., FeatureIDE), we can
also use #∃SAT (e.g., pd4)

negation can also be avoided
when using 1− #SAT(x)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 13



Inadvertent Variability Reduction – The Math

a clever combination of dis-
tributive and Tseitin trans-
formation, #SAT, and slicing

instead of #SAT and slicing
(e.g., FeatureIDE), we can
also use #∃SAT (e.g., pd4)

negation can also be avoided
when using 1− #SAT(x)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 13



Inadvertent Variability Reduction – The Math

a clever combination of dis-
tributive and Tseitin trans-
formation, #SAT, and slicing

instead of #SAT and slicing
(e.g., FeatureIDE), we can
also use #∃SAT (e.g., pd4)

negation can also be avoided
when using 1− #SAT(x)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 13



Inadvertent Variability Reduction – The Math

a clever combination of dis-
tributive and Tseitin trans-
formation, #SAT, and slicing

instead of #SAT and slicing
(e.g., FeatureIDE), we can
also use #∃SAT (e.g., pd4)

negation can also be avoided
when using 1− #SAT(x)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 13



Inadvertent Variability Reduction – The Math

a clever combination of dis-
tributive and Tseitin trans-
formation, #SAT, and slicing

instead of #SAT and slicing
(e.g., FeatureIDE), we can
also use #∃SAT (e.g., pd4)

negation can also be avoided
when using 1− #SAT(x)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 13



Inadvertent Variability Reduction – The Math

a clever combination of dis-
tributive and Tseitin trans-
formation, #SAT, and slicing

instead of #SAT and slicing
(e.g., FeatureIDE), we can
also use #∃SAT (e.g., pd4)

negation can also be avoided
when using 1− #SAT(x)

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 13



2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2023

0%

5%

10%

15% Removed Features

Added Features

Year

S
h

a
r
e

 o
f 

F
e

a
tu

r
e

s

2006
2007

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

2018
2019

2020
2021

2023

0%

20%

40%

60%
Removed Constraints

Added Constraints

Year

S
h

a
r
e

 o
f 

C
o

n
s
tr

a
in

le
ft_d

iff
_k

in
d

=
w

e
a

k

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
3

0%

50%

100%

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
3

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

2
0

1
8

2
0

1
9

2
0

2
0

2
0

2
1

2
0

2
3

0

0.5

1

0

0.5

Removed Products

Added Products

Year Year Year

S
h

a
r
e

 o
f 

P
r
o

d
u

c
ts

S
h

a
r
e

 o
f 

P
r
o

d
u

c
ts

S
h

a
r
e

 o
f 

P
r
o

d
u

c
ts

le
ft_d

iff
_k

in
d

=
w

e
a

k
le

ft_d
iff

_k
in

d
=

to
p

-stro
n

g
d

iff
_k

in
d

=
b

o
tto

m
-stro

n
g

Elias Kuiter et al. Quantified Reasoning About Edits to Feature Models 14


